If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X2=115
We move all terms to the left:
X^2+X2-(115)=0
We add all the numbers together, and all the variables
2X^2-115=0
a = 2; b = 0; c = -115;
Δ = b2-4ac
Δ = 02-4·2·(-115)
Δ = 920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{920}=\sqrt{4*230}=\sqrt{4}*\sqrt{230}=2\sqrt{230}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{230}}{2*2}=\frac{0-2\sqrt{230}}{4} =-\frac{2\sqrt{230}}{4} =-\frac{\sqrt{230}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{230}}{2*2}=\frac{0+2\sqrt{230}}{4} =\frac{2\sqrt{230}}{4} =\frac{\sqrt{230}}{2} $
| 2x-7-4=x | | 2x-7=4-x | | 50=3(x+80) | | 3=3(x+80) | | 15x4=12x5=60 | | 3yy=7 | | 12÷a=3 | | 10-6x+5(x^2)=0 | | Z3+9i=0 | | 8x+82=122 | | (7x)°=60°+(5x)° | | (7x)°+(5x)°=60° | | 5(2e-4)=10 | | 6y+1/3+1=y-3-6 | | 5t+43=28 | | 8x+5x=50 | | 8x+5x=67 | | 2=22÷y | | -2x+28=40 | | -2x+28=34 | | -2x+28=29 | | x.10x+9=4x-9 | | 6( | | 34/17=a/8 | | 9x²-15x+4=0 | | 2/3c=17/9 | | 14y-51=186+4y | | -13-x=35 | | -5x+47=-93 | | 8k(-1)=15 | | 4(3x-1)=2(x+5) | | r=√10^-4 |